Интегрированные сети ISDN

         

Классификация категорий



Таблица 4.1.1.2.5. Классификация категорий оптических волокон для сетевых приложений (данные взяты из журнала "LAN line Special" за июль-август 2002 года; www.lanline.de). Согласно принятым сокращениям буквы в конце обозначения канала (например, 10Gbase-LX) характеризуют оптическое волокно [E - Extended (для WAN или MAN, длина волны 1550нм), L - Long (для расстояний



Тип сети Потери ввода (дБ) Канал ISO/IEC 11801на основе
  Много-
мод
Одно-
мод
a
Волокна ОМ1 Волокна ОМ2 Волокна ОМ3 Волокно ОS1

 

850 нм

1300 нм

1300 нм

850 нм

1300 нм

850 нм

1300 нм

850 нм

1300 нм

1300 нм

1500 нм

ISO/IEC 8802-3:

10Base-FL, FPb & FBf

12,5(6,8)

-

-

OF-2000

 

OF-2000

 

OF-2000

 

 

 

ISO/IEC TR 11802-4:

4 & 16 Мбит/c, Token Ringf

13,0(8,0)

-

-

OF-2000

 

OF-2000

 

OF-2000

 

 

 

ATM @ 52 Мбит/cg

NA

10,0(5,3)

10.0

 

OF-2000

 

OF-2000

 

OF-2000

OF-2000

 

ATM @ 155 Мбит/cg

7,2

10,0(5,3)

7.0

OF-500

OF-2000

OF-500

OF-2000

OF-500

OF-2000

OF-2000

 

ATM @ 622 Мбит/ce,f,g

4.0

6,0(2,0)

7,0

OF-300

OF-500

OF-300

OF-500

OF-300

OF-500

OF-2000

 

ISO/IEC 14165-111:
Fibre Channel (FC-PH)@ 133Мбит/cc,f

NA

6,0

 

 

OF-2000

 

OF-2000

 

OF-2000

 

 

ISO/IEC 14165-111:
Fibre Channel (FC-PH)@ 266Мбит/cc,g

12.0

6,0(5.5)

6.0

OF-2000

OF-2000

OF-2000

OF-2000

OF-2000

OF-2000

OF-2000

 

ISO/IEC 14165-111:
Fibre Channel (FC-PH)@ 531Мбит/cc,g

8.0

-

14.0

OF-500

 

OF-500

 

OF-500

 

OF-2000

 

ISO/IEC 14165-111:
Fibre Channel (FC-PH)@ 1062Мбит/ce,g

4.0

-

6.0

OF-300

 

OF-500

 

OF-500

 

OF-2000

 

ISO/IEC 8802-3: 1000Base-SXe

2.6(3.56)

-

-

 

 

OF-500

 

OF-500

 

 

 

ISO/IEC 8802-3: 1000Base-LXe,g

-

2.35

4.56

 

OF-500

 

OF-500

 

OF-500

OF-2000

 

ISO/IEC 9314-9: FDDI LCF-PMDb,f

-

7.0(2.0)

-

 

OF-500

 

OF-500

 

OF-500

 

 

ISO/IEC 9314-3: FDDI PMDf

-

11.0(6.0)

-

 

OF-2000

 

OF-2000

 

OF-2000

 

 

ISO/IEC 9314-3: FDDI SMF-PMDg

-

-

10.0

 

 

 

 

 

 

OF-2000

 

ISO/IEC 8802-3: 100BASE-FXf

 

11.0(6.0)

-

 

OF-2000

 

OF-2000

 

OF-2000

 

 

IEEE 802.3: 10GBASE-LX4d

 

2.0

6.2

 

OF-300

 

OF-300

 

OF-300

OF-2000

 

IEEE 802.3: 10GBASE-ER/EWd

 

 

 

 

 

 

 

 

 

 

OF-2000

IEEE 802.3: 10GBASE-SR/SWd

1.6(62.5)
1.8(OM-2)
2.6(OM-3)

-

-

 

 

 

 

OF-300

 

 

 

IEEE 802.3: 10GBASE-LR/LWd,g

-

-

6.2

 

 

 

 

 

 

OF-2000

 

<
  1. Представлены значения для волокон с диаметрами 62.5/125 и 50/125 m(MMF). Там, где значения отличаются, в скобках дается величина для 50 мкм.

  2. Приложение в настоящее время промышленностью не поддерживается

  3. Приложение в настоящее время не поддерживается разрабатывавшей его группой

  4. Приложение в стадии разработки

  5. Приложение с ограниченной полосой пропускания для указанных длин канала. Использование для каналов с более высокими требованиями в случае применения компонентов с меньшим ослаблением, не рекомендуется.

  6. Длина канала может быть ограничена для волокон с диаметром 50 мкм.

  7. Длина канала для одномодового волокна может быть больше, но это находится вне пределов регламентаций стандарта.

  8. Таблица 4.1.1.2.6. Максимальные длины каналов с мультимодовыми волокнами

    Сетевое приложение Номинальная длина
    волны [нм]
    Максимальная длина канала в м
    Волокно 50мкмa Волокно 62,5мкм;b
    ISO/IEC 8802-3: FOIRL 850 514 1000
    ISO/IEC 8802-3: 10BASE-FL&FB 850 1514 2000
    ISO/IEC TR 11802-4: 4 &16Мбит/c Token Ring 850 1857 2000
    ATM @ 155 Мбит/c 850 1000a 1000b
    ATM @ 622 Мбит/c 850 300a 300b
    ISO/IEC 14165-111: Fibre Channel (FC-PH) @ 266 Мбит/c 850 2000 700
    ISO/IEC 14165-111: Fibre Channel (FC-PH) @ 531 Мбит/c 850 1000 350
    ISO/IEC 14165-111: Fibre Channel (FC-PH) @ 1062 Мбит/cc 850 500a 350b
    IEEE 802.3: 1000BASE-SX 850 550a 275b
    ISO/IEC 9314-9: FDDI LCF-PMD 1300 500 500
    ISO/IEC 9314-3: FDDI PMD 1300 2000 2000
    ISO/IEC 8802-3: 100BASE-FX 1300 2000 2000
    IEEE 802.5t: 100Мбит/c Token Ring 1300 2000 2000
    ATM @ 52 Мбит/c 1300 2000 2000
    ATM @ 155 Мбит/c 1000 2000 2000
    ATM @ 622 Мбит/c 1300 330 500
    ISO/IEC 14165-111: Fibre Channel (FC-PH) @ 133 Мбит/c 1300 Не поддерживается 1500
    ISO/IEC 14165-111: Fibre Channel (FC-PH) @ 266 Мбит/c 1300 2000 1500
    IEEE 802.3: 1000BASE-LXc 1300 550a 550b

    1. Максимальное ослабление на км (850/130нм): 3.5/1.5 дБ/км; минимальная полоса пропускания для длин волн (850/130нм): 500МГцкм



    2. Максимальное ослабление на км (850/130нм): 3.5/1.5 дБ/км; минимальная полоса пропускания для длин волн (850/130нм): 200МГцкм/500МГцкм

    3. Эти приложения ограничены по полосе. Использование компонентов с меньшим поглощением для получения каналов с улучшенными параметрами, не рекомендуется.

    Всякая, даже гигантская сеть была когда-то маленькой. Обычно сеть начинается с одного сегмента типа 1, 3 или 4 (Рисунок 4.1.1.2.1). Когда ресурсы одного сегмента или концентратора (повторители для скрученных пар) исчерпаны, добавляется повторитель. Так продолжается до тех пор, пока ресурсы удлинения сегментов и каналы концентраторов закончатся и будет достигнуто предельное число повторителей в сети (4 для 10МГц-ного Ethernet). Если при построении сети длина кабельных сегментов и их качество не контролировалось, возможен и худший сценарий - резкое увеличение числа столкновений или вообще самопроизвольное отключение от сети некоторых ЭВМ. Когда это произошло, администратор сети должен понять, что время дешевого развития сети закончилось - надо думать о приобретении мостов, сетевых переключателей, маршрутизаторов, а возможно и диагностического оборудования. Применение этих устройств может решить и проблему загрузки некоторых сегментов, ведь в пределах одного логического сегмента потоки, создаваемые каждым сервером или обычной ЭВМ, суммируются. Не исключено, что именно в этот момент сетевой администратор заметит, что топология сети неудачна и ее нужно изменить. Чтобы этого не произошло, рекомендуется с самого начала тщательно документировать все элементы (кабельные сегменты, интерфейсы, повторители и пр.). Хорошо, если уже на первом этапе вы хорошо представляете конечную цель и те возможности, которыми располагаете. Бухгалтерская сеть и сеть, ориентированная на выход в Интернет, будут иметь разные структуры. Прокладывая кабели, рекомендуется учитывать, что положение ЭВМ время от времени меняется, и это не должно приводить к изменению длины сегмента или к появлению дополнительных “сросток”.


    Следует также избегать применения в пределах сегмента кабелей разного типа и разных производителей. Если сеть уже создана, научитесь измерять информационные потоки в сегментах и внешние потоки (если ваша сеть соединена с другими сетями, например с Интернет), это позволит осмысленно намечать пути дальнейшей эволюции сети. Если возможности позволяют, избегайте использования дешевых сетевых интерфейсов, их параметры часто не отвечают требованиям стандарта. Сетевая архитектура требует немалых знаний и это дело лучше поручить профессионалам.
    Когда потоки данных в сети достигают уровня, при котором использование мостов и сетевых переключателей уже недостаточно, можно подумать о внедрении маршрутизаторов или оптоволоконных сегментов сети FDDI или быстрого (100 Мбит/с) Ethernet. Эти субсети будут играть роль магистралей, по которым идет основной поток данных, ответвляясь в нужных местах в субсети, построенные по традиционной технологии (см. раздел FDDI). Сеть FDDI для этих целей предпочтительнее, так как она не страдает от столкновений и у нее не падает пропускная способность при перегрузке. Если в вашей сети имеются серверы общего пользования, их рекомендуется подключить к быстродействующим сегментам и организовать несколько узлов доступа к FDDI-кольцу. Остальные потребители будут соединены с FDDI через эти узлы доступа (мосты/шлюзы). Аналогичную функцию могут выполнять и сегменты быстрого Ethernet (особенно хороши для этого схемы дуплексного обмена, см. выше).
    Особую проблему составляют переходы 100 Мбит/с ®10 Мбит/с (Рисунок 4.1.1.2.7). Дело в том, что на MAC-уровне нет механизмов понижения скорости передачи для согласования возможностей отправителя и приемника. Такие возможности существуют только на IP-уровне (ICMP-congestion). Если функцию шлюза исполняет, например, переключатель, то исключить переполнение его буфера невозможно. Такое переполнение неизбежно приведет к потере пакетов, повторным передачам и, как следствие, к потере эффективной пропускной способности канала.Решить проблему может применение в качестве шлюза маршрутизатора (здесь работает ICMP-механизм ”обратного давления”).

    Содержание раздела